If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+10t-300=0
a = 1; b = 10; c = -300;
Δ = b2-4ac
Δ = 102-4·1·(-300)
Δ = 1300
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1300}=\sqrt{100*13}=\sqrt{100}*\sqrt{13}=10\sqrt{13}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{13}}{2*1}=\frac{-10-10\sqrt{13}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{13}}{2*1}=\frac{-10+10\sqrt{13}}{2} $
| 1=c-90/8 | | 9x+3=1x-1 | | 9x+3=1x-2 | | 9x+3=1x+9 | | 9x+3=1x+5 | | 2x-1/2=35/12 | | 1x+9=1x+9 | | 28h=196 | | 22-3f=16 | | 5x+2=2(x | | 456=19q | | 25•c=625 | | 15=5(r-96) | | 2z/6=4 | | 770=22v | | 35=x(4x-3) | | 11+4x=2x-2+1 | | 6s=132 | | 3x-2+1=4 | | Y=4x.2x+2.5=105 | | 17-7x^=3 | | 4s–12=-5s+51 | | 9w-3=0 | | 469=7m | | (-3x+51)+(11x-25)=90 | | 30=x/3+17 | | 2+5a+6=10-2+3a | | 8p+5=5p-6-4-6 | | x/2+3=2/3x | | A=(4x+2) | | 1/5y=100y= | | 9x+3=1x+3 |